A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media

نویسندگان

  • Assyr Abdulle
  • Ondrej Budáč
چکیده

A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RBDS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale method is based on the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) introduced in [A. Abdulle, O. Budáč, Multiscale Model. Simul. 13 (2015)] that couples a Darcy equation solved on a macroscopic mesh, with missing permeability data extracted from the solutions of Stokes micro problems at each macroscopic quadrature point. To overcome the increasingly growing cost of repeatedly solving the Stokes micro problems as the macroscopic mesh is refined, we parametrize the microscopic solid geometry and approximate the infinite-dimensional manifold of parameter dependent solutions of Stokes problems by a low-dimensional space. This low-dimensional (reduced basis) space is obtained in an offline stage by a greedy algorithm and used in an online stage to compute the effective Darcy permeability at a cost independent of the microscopic mesh. The discretization of the parametrized Stokes problems relies on a Petrov-Galerkin formulation that allows for a stable and fast online evaluation of the required permeabilities. A priori and a posteriori estimates of the RB-DS-FE-HMM are derived and a residual-based adaptive algorithm is proposed. Twoand three-dimensional numerical experiments confirm the accuracy of the RB-DS-FE-HMM and illustrate the speedup compared to the DS-FE-HMM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discontinuous Galerkin Reduced Basis Numerical Homogenization Method for Fluid Flow in Porous Media

We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes solver at the pore scale to recover effective permeabilities at macroscopic quadrature points. To avoid costly computation of numerous Stoke...

متن کامل

Contents 1 Schedule 4 2

In this talk we will present recent developments in the design and analysis of numerical homogenization methods. Numerical methods for linear and nonlinear partial differential equations that combine multiscale methods with reduced order modeling techniques such as the reduced basis method will be discussed. The talk is based upon a series of joint works with various collaborators[1,2,3,4,5]. [...

متن کامل

An Adaptive Finite Element Heterogeneous Multiscale Method for Stokes Flow in Porous Media

A finite element heterogeneous multiscale method is proposed for solving the Stokes problem in porous media. The method is based on the coupling of an effective Darcy equation on a macroscopic mesh, with unknown permeabilities recovered from micro finite element calculations for Stokes problems on sampling domains centered at quadrature points in each macro element. The numerical method account...

متن کامل

Multiscale methods and model order reduction for flow problems in three-scale porous media

A new multiscale method combined with model order reduction is proposed for flow problems in three-scale porous media. We derive an effective three-scale model that couples a macroscopic Darcy equation, a mesoscopic Stokes-Brinkman equation, and a microscopic Stokes equation. A corresponding three-scale numerical method is then derived using the finite element discretization with numerical quad...

متن کامل

Accurate multiscale finite element methods for two-phase flow simulations

In this paper we propose a modified multiscale finite element method for two-phase flow simulations in heterogeneous porous media. The main idea of the method is to use the global fine-scale solution at initial time to determine the boundary conditions of the basis functions. This method provides a significant improvement in two-phase flow simulations in porous media where the long-range effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015